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Abstract:  A 125µm glass diameter trench-assisted single-mode fiber with a record Aeff of 155µm² 
and attenuation of 0.183dB/km at 1550nm is reported. This fiber shows acceptable micro-bend 
losses compared to those of a SSMF. 
OCIS codes: 060.2280 Fiber design and fabrication, 060.2330 Fiber optics communications 

 
1. Introduction 

In long-haul transmissions, dispersion issues are now dealt with advanced coherent detection and digital signal 
processing techniques [1-4]. This new landscape has fostered innovation in low-attenuation, large effective-area 
(Aeff) fibers. During the past 2 years, demonstrations of fibers with attenuations below 0.185dB/km and Aeff larger 
than 110µm² at 1550nm (that has been the typical value for more than a decade) have been reported [5-8].  

To design such fibers, step-index profiles only offer limited possibilities: low index differences and large core 
diameters are required to enlarge the Aeff, which inevitably deteriorates bending and cutoff behaviors. Adding a 
slightly depressed-index cladding next to the step-index core helps to reduce the macro-bending and cutoff 
degradations [6]. But, the main limitation to further enlarge the Aeff is the micro-bending sensitivity that greatly 
increases. An alternative to these structures consists in placing a largely depressed-index region in the cladding, i.e. 
a trench, slightly apart from the step-index core. These trench-assisted profiles not only provide improved macro-
bending and cutoff performances, but also brings significant advantage in term of micro-bending behavior [9]. 

In this paper, we show how such structures can efficiently be used to design 125µm glass diameter single-mode 
fibers with Aeff larger than 150µm² at 1550nm and with acceptable micro-bending sensitivity. 

2.  Fiber design 

In 2008, we reported a trench-assisted fiber with Aeff of 120µm², attenuation of 0.183dB/km at 1550nm, cable cutoff 
wavelength <1480nm and macro- and micro-bend losses lower than those of a Standard Single-Mode Fiber (SSMF) 
[5]. To further improve the performance of such a fiber, one can lower the attenuation and/or enlarge the Aeff. 
Keeping the same index profile and using a pure-silica-core structure, we have fabricated a fiber with Aeff of 121µm² 
and attenuation of 0.171dB/km at 1550nm, and same other characteristics as those of Ref.[5]. But further enlarging 
the Aeff requires to adjust the index profile and to carefully investigate the impact of micro-bend losses.  

In that purpose, we have calculated the micro-bend losses of step-index profiles and of trench-assisted profiles as 
a function of Aeff at 1550nm (see Fig.1), using the formalism developed in [9] and experimental data for the SSMF 
and for Ref.[5] (collected using the Method B of the IEC TR-62221 document). 
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Fig.1: Comparison of step-index fibers (gray) and trench-assisted fibers (black) with same glass diameter of 125µm and same dual-coating 

properties and outside diameter of 245µm: index profiles (a), theoretical (lines) and experimental (symbols) micro-bend losses at 1550nm (b)  

For fair comparison, all fibers have macro-bend losses <10dB/m at 10mm bend radius at 1625nm, cable cutoff 
wavelengths <1530nm, same glass diameter of 125µm, and same dual-coating properties and outside diameter of 
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245µm. Trench-assisted profiles allow to gain a factor of ~10 in micro-bending sensitivity compared to step-index 
profiles. This is due to a specific mechanism that limits the coupling between the fundamental mode and the 
radiation modes that are confined by the trench [9]. This allows to target an Aeff of 160µm² at 1550nm with micro-
bend losses less than 10 times higher than those of a SSMF.  

To get a better picture of the advantages brought by the enlargement of Aeff, we have used an analytical 
expression that gives the achievable distance of transmission systems [10]. For all calculations, we have considered 
realistic non-linear-index (n2) and splice-loss values (2 splices with SSMF per span), span length of 50km, discrete 
amplification and no optical dispersion compensation. Fig.2 shows the achievable distance as a function of Aeff for 
different attenuations compared to a standard undersea fiber (n2=2.6×10-20m²/W, attenuation=0.185dB/km, 
Aeff=110µm²). For same attenuation, enlarging the Aeff from 110 to 160µm² allows to gain ~20% in distance; and for 
same Aeff, reducing the attenuation from 0.185 to 0.165dB/km allows to gain ~10% (note that for longer span 
lengths, the gain would be higher [4]).  
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Fig.2: Achievable distance of a 50km-span transmission system as a function of Aeff for different attenuations at 1550nm compared to a 

standard undersea fiber with Aeff=110µm² and attenuation of 0.185dB/km 

3.  Experimental results 

Based on these considerations, we have designed and fabricated a 125µm glass diameter trench-assisted single-mode 
fiber with Aeff of 155µm² and attenuation of 0.183dB/km (germanium-doped-core structure) at 1550nm, using our 
standard PCVD and drawing processes. Main characteristics are given in Table 1. 

Table 1. Characteristics of the 125µm glass diameter fiber  
Chromatic Dispersion ps/nm-km 21.7 
Dispersion Slope  

1550nm 
ps/nm²-km 0.064 

Cable Cutoff Wavelength   nm 1550 
Effective Area 1550nm µm² 155 

1530nm 0.189 
1550nm 0.183 Attenuation  
1570nm 

dB/km 
0.181 

1550nm 0.4 Macro-Bend Loss at 10mm bend radius 
1625nm 

dB/m 
0.5 

Micro-Bend Loss (IEC TR 62221, method B): 245µm coating diameter 1550nm dB/km 14.7 
Micro-Bend Loss (IEC TR 62221, method B): 320µm coating diameter 1550nm dB/km 1.3 
Polarization Mode Dispersion 1550nm ps/√km 0.05 

Because trench-assisted profiles allow for much better light confinement than step-index profiles, very low 
macro-bend losses of 0.4 and 0.5dB/m at 10mm bend radius have been obtained at 1550 and 1625nm, respectively, 
which is 10 to 20 times less than those of a SSMF.  

Micro-bend losses have been carefully investigated using the Method B of the IEC-62221 document (spectral 
losses are recorded in standard temperature and humidity conditions before and after winding 400m of a fiber with a 
tension of 3N around a 320mm-diameter drum coated with a 40µm-grade sandpaper, the difference giving the 
micro-bend-loss spectrum of the fiber). Fig.3 summarizes our findings. Experimental results are in good agreement 
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with the theory. The fiber with glass diameter of 125µm and dual-coating diameter of 245µm experiences a loss 
increase of 14.7dB/km at 1550nm. This is indeed less than ten times higher than what is obtained for a SSMF 
(1.6dB/km at 1550nm) with same coating properties and dimensions, which is remarkable given the very large Aeff 
of the fiber. We have then investigated the impact of the dual-coating diameter. Keeping same 125µm glass 
diameter and increasing the dual-coating diameter from 245 to 320µm, the micro-bending sensitivity can be 
decreased by a tenfold factor, bringing the micro-bend losses (1.3dB/km at 1550nm) to the level of the SSMF. 
Finally, we have also measured the trench-assisted pure-silica-core fiber with Aeff of 121µm² and attenuation of 
0.171dB/km at 1550nm. As expected, this fiber has similar micro-bend losses as those of Ref.[5]. 
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Fig.3: Theoretical (line) and experimental (circles) micro-bend losses at 1550nm of different 125µm glass diameter trench-assisted fibers; the 

experimental SSMF value (gray triangle) is given for comparison 

At last, average splice losses of 0.03dB have been obtained between two 155µm² fibers, while splicing to a 
SSMF resulted in losses of 0.13dB using an appropriate bridge fiber. 

4.  Conclusion 

Micro-bend loss is the main limitation of Aeff enlargement when one wants to keep a standard 125µm glass 
diameter. In addition to optimizing coating properties, trench-assisted profiles bring significant advantages because 
the trench reduces the coupling between the fundamental mode and the radiation modes, providing an intrinsically 
lower micro-bending sensitivity than that of step-index profiles.  

Taking these considerations into account, we have designed and fabricated a 125µm glass diameter trench-
assisted single-mode fiber with a record Aeff of 155µm² and attenuation of 0.183dB/km at 1550nm. This fiber 
exhibits acceptable micro-bend losses compared to those of a SSMF, even though the Aeff is ~twice as large.   

The authors would like to thank M. Salsi and G. Charlet for fruitful discussions, and the French ANRT for partially 
funding this work through the STRADE project. 
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